Next-generation ⁷⁶Ge neutrinoless double beta-decay experiments

J.F. Wilkerson

Center for Experimental Nuclear Physics and Astrophysics

University of Washington

Acknowledgments:

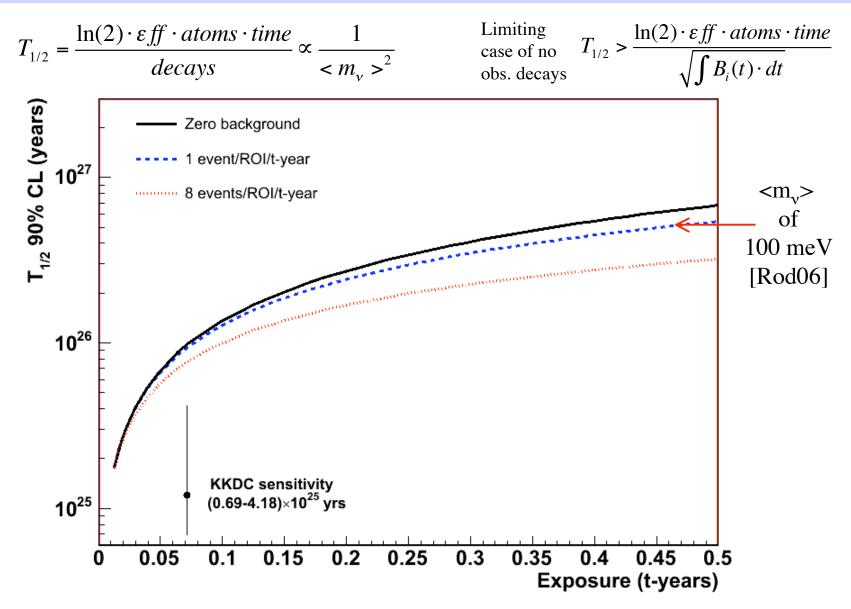
Stefan Schönert, MPIK Heidelberg, Jason Detwiler, CENPA The GERDA Collaboration, The Majorana Collaboration,

Using 76 Ge to search for $0\nu\beta\beta$

⁷⁶Ge offers an excellent combination of capabilities and sensitivities.

- Ge as source & detector.
- Elemental Ge maximizes the source-to-total mass ratio.
- Intrinsic high-purity Ge diodes.
- Favorable nuclear matrix element |M^{0√}|=2.5 [Rod06].
- Reasonably slow $2\nu\beta\beta$ rate $(T_{1/2} = 1.4 \times 10^{21} \text{ y}).$
- Demonstrated ability to enrich from 7.44% to ≥ 86%.

- Excellent energy resolution 0.16% at 2.039 MeV, 4 keV ROI
- Powerful background rejection.
 Segmentation, granularity, timing, pulse shape discrimination
- Best limits on $0\nu\beta\beta$ decay used Ge (IGEX & Heidelberg-Moscow) $T_{1/2} > 1.9 \times 10^{25} \text{ y (90\%CL)}$
- Well-understood technologies
 - Commercial HPGe diodes
 - Large Ge arrays (Gammasphere, TIGRESS, AGATA, GRETINA)


⁷⁶Ge Sensitivity & Background Dependence

$$T_{1/2} = \frac{\ln(2) \cdot \varepsilon ff \cdot atoms \cdot time}{decays} \propto \frac{1}{\langle m_v \rangle^2}$$

 $\begin{array}{ll} \text{Limiting} \\ \text{case of no} \\ \text{obs. decays} \end{array} T_{1/2} > \frac{\ln(2) \cdot \varepsilon \textit{ff} \cdot \textit{atoms} \cdot \textit{time}}{\sqrt{\int B_i(t) \cdot dt}}$

⁷⁶Ge Sensitivity & Background Dependence

Nuclear Matrix Elements and 0νββ-decay

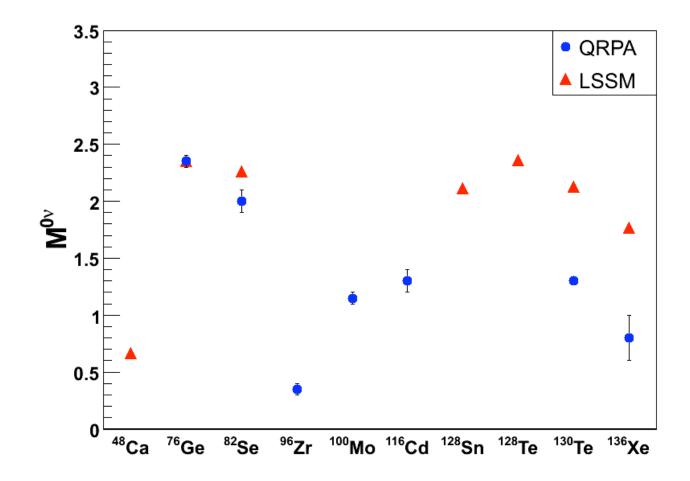
$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}(E_0, Z) \left| \langle m_{\nu} \rangle \right|^2 \left| M_f^{0\nu} - (g_A/g_V)^2 M_{GT}^{0\nu} \right|^2$$

- If neutrinos are Majorana particles, extracting the effective neutrino mass requires an understanding of the nuclear matrix elements (NME) at about the 20% theoretical uncertainty level.
 - For ⁷⁶Ge, a comparison of *previous* calculations yields a factor of 2-3 in predicted decay rates between Shell Model and RQRPA techniques or ~1.6 uncertainty in neutrino mass.
 - Using compilations or averages of previous sequential calculations should not be used to estimate theoretical uncertainties.

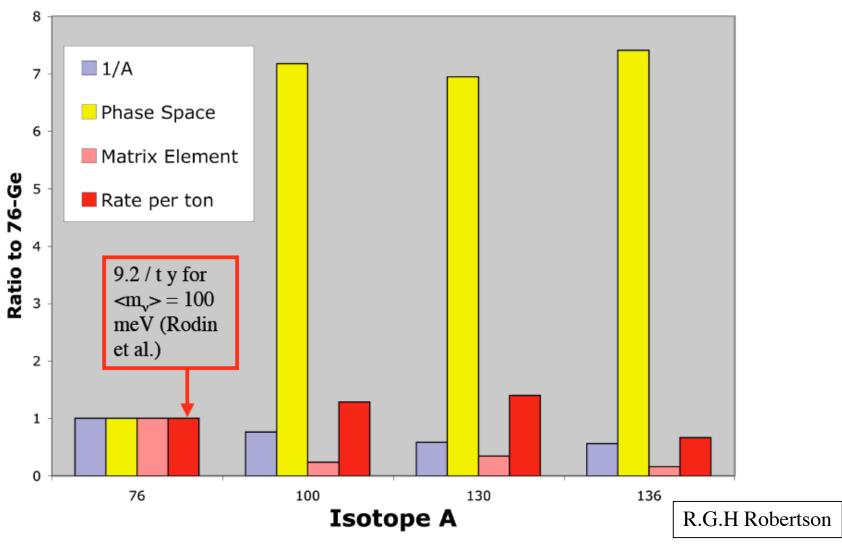
Recent Progress in NME Calculations

QRPA

- Rodin, Faessler, Simkovic, and Vogel used measured values of $2\nu\beta\beta$ to adjust g_{pp} resulting in "stable" $0\nu\beta\beta$ prediction.
 - Inclusion of short-range repulsion enhances NME by ~30%
 - Induced pseudeoscalar current reduces NME by ~30%
- Have found that semi-magic nuclei (⁴⁸Ca, ¹¹⁶Sn, ¹³⁶Xe) are very sensitive to pairing treatment.
- Rodin has been investigating including more states and developing a Continuum-QRPA. This tends to quench the NME for 0vββ by 20-30%.

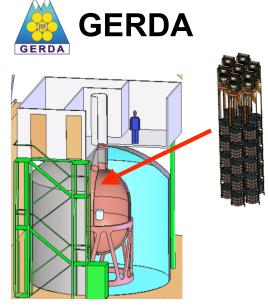

Shell Model (Caurier, Nowacki, & Poves)

- Advances with algorithms, "Large Scale Shell Model" (LSSM) can deal with a basis space containing 10¹¹ Slater determinants.
- Recent "hypothetical" studies indicate $0\nu\beta\beta$ is relatively insensitive spin-orbit partner effects when compared to $2\nu\beta\beta$.
- Find a different multipole structure for 1+ contribution that is often the opposite sign from RQRPA.
- Starting to investigate the 2p-2h excitations.


NME Comparison of QRPA and SM

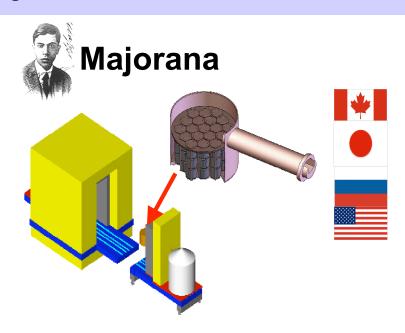
QRPA: Nucl. Phys. A, 766 107 (2006)

LSSM: From Poves NDM06 talk (Caurier, Nowacki, Poves),



Isotope Comparison

Next-generation ⁷⁶Ge Projects:



- Shield: high-purity liquid Argon (N) / H₂O
- Phase I: ~18 kg (HdM/IGEX diodes)

Physics

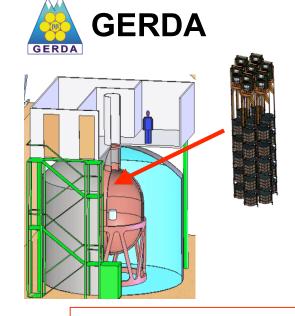
goals:

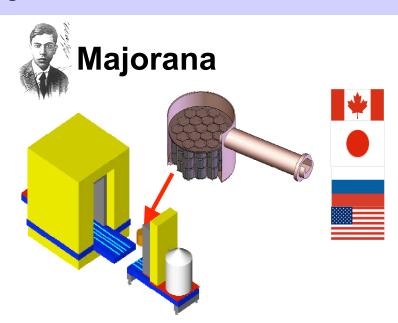
 Phase II: add ~20 kg new enr. detectors total ~40 kg

- Modules of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Staged approach based on ~20-60 kg modules (120 kg)

probe degenerate mass range;

test KKDC result;


- study bgds. and exp. techniques required for large 1 ton scale experiment



9

Next-generation ⁷⁶Ge Projects:

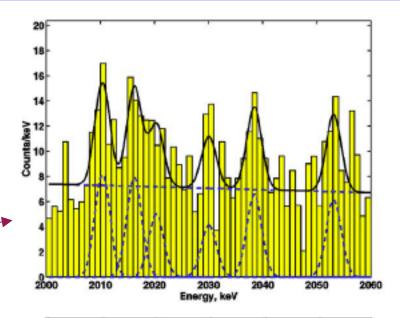
Physics goals:

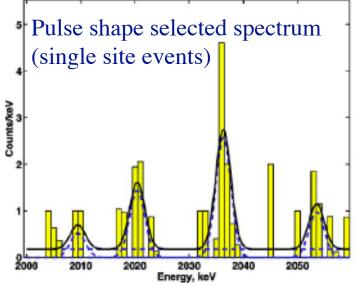
- probe degenerate mass range;
- test KKDC result;
- study bgds. and exp. techniques required for large 1 ton scale experiment

Cooperative Agreement:

- open exchange of knowledge & technologies (e.g. MaGe MC)
- consider merging for O(1 ton) exp. (inv. Hierarchy) Select best techniques developed and tested in GERDA and Majorana

The KKDC Result


Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198 (2004).


Best result - 5 ⁷⁶Ge crystals, 10.96 kg of mass, 71 kg-years of data.

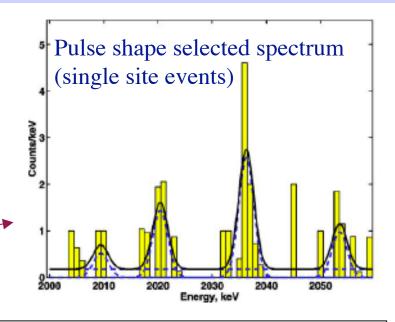
$$T_{1/2} = (1.19 + 2.99/-0.5) \times 10^{25} \text{ y}$$

0.24 < m_v < 0.58 eV (3 σ)

Plotted a subset of the data for four of five crystals, 51.4 kg-years of data.

$$T_{1/2} = (1.25 + 6.05 / -0.57) \times 10^{25} \text{ y}$$

The KKDC Result

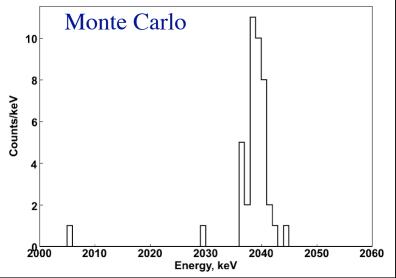

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198 (2004).

Best result - 5 ⁷⁶Ge crystals, 10.96 kg of mass, 71 kg-years of data.

$$T_{1/2} = (1.19 + 2.99/-0.5) \times 10^{25} \text{ y}$$

0.24 < m_v < 0.58 eV (3 sigma)

Plotted a subset of the data for four of five crystals, 51.4 kg-years of data.


$$T_{1/2} = (1.25 + 6.05 / -0.57) \times 10^{25} \text{ y}$$

Projected signal in Majorana After cuts (for 0.15 t-y)

45 counts

With a background of 0.2 events in ROI

Backgrounds!

- Sensitivity to $0\nu\beta\beta$ decay is ultimately limited by S-to-B.
 - Goal: ~ 60 150 times lower background (after analysis cuts) than previous ⁷⁶Ge experiments (H-M and IGEX).
- Approach
 - Optimize the detector energy resolution (HPGe)
 - Shield the detector from external natural and cosmogenic sources
 - Ultra-pure materials used in proximity to the crystals
 - electroformed Cu, LAr, clean low-mass support structures,
 - development of ultra-senstive ICPMS methods for materials assay
 - Discriminate between single site (ββ-decay) vs. multi-site events
 - Granularity (close-packed crystal arrays)
 - Segmentation (segmented electrodes on individual crystals)

13

- Pulse shape analysis
- Time correlation analysis

Comparison of Background Goals

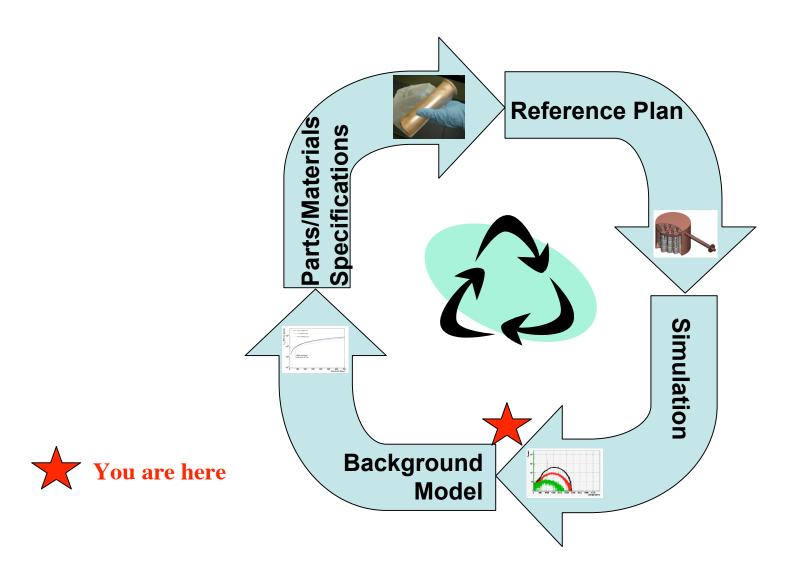
Expt	Isotope	(after cuts)	Backgrounds (after cuts) cnt/ROI/t-y	2.8s "ROI" width (keV)	Sigma (keV)	Eo (keV)	Res. At the peak (FWHM)
KKDC	⁷⁶ Ge	60.00	240.00	4	1.386	2039	0.16%
EXO200	¹³⁶ Xe	1.1	87.5	79.2	39.616	2476	3.77%
CUORE	¹³⁰ Te	1	7	7	2.5	2533	0.20%
GERDA	⁷⁶ Ge	1	4	4	1.386	2039	0.16%
Majorana	⁷⁶ Ge	0.4	1.6	4	1.386	2039	0.16%

Notes:

KKDC - backgrounds BEFORE cuts is 113.00 cnt/kev/t-y from Physics Letters B 586 (2004) 198-212

KKDC - backgrounds after cuts come from Eur. Phys. J. A 12, 147–154 (2001). The data set included 35.5 kg y and the background index in the energy region between 2000– 2080 keV is (0.06±0.01) events/(kg y keV)

EXO gives resolution in sigma/E of 1.6%


CUORE gives sigma value of 2.5 (larger than calculated from their typical resolution, 2.15)

Ultra-pure materials - Majorana Example

Table 4.1: Component material radioactivity goals for the major contributors to backgrounds in the $0\nu\beta\beta$ - decay region of interest. Note that the column Equivalent Achieved Assay specifies the goal for the component's activity in ²⁰⁸Tl to the measured quantity of ²³²Th. An activity of ²⁰⁸Tl of 0.3 μ Bq/kg would correspond to an activity of ²³²Th of 1.0 μ Bq/kg. We have focused on the Th contamination levels, since it has the more complex chemistry and hence is more difficult to remove.

Location	Purity Issue	Exposure	Activation Rate	Equiv. Achieved Assay	Reference
Germanium	⁶⁸ Ge, ⁶⁰ Co	100 d	1 atom/kg/day		[Avi92]
		Component Mass	Target Purity		
Inner Mount	$^{208}\mathrm{Tl}$ in Cu	2 kg	$0.3~\mu\mathrm{Bq/kg}$	0.7-1.3 $\mu \mathrm{Bq/kg}$	Current work also [Arp02]
	$^{214}\mathrm{Bi}$ in Cu	3	$1.0~\mu\mathrm{Bq/kg}$,
Cryostat	$^{210}\mathrm{Tl}$ in Cu	38 kg	$0.1~\mu\mathrm{Bq/kg}$	0.7-1.3 $\mu \mathrm{Bq/kg}$	Current work also [Arp02]
	$^{214}\mathrm{Bi}$ in Cu		$0.3~\mu\mathrm{Bq/kg}$		
Cu Shield	$^{208}\mathrm{Tl}$ in Cu	310 kg	$0.1~\mu\mathrm{Bq/kg}$	0.7-1.3 $\mu \mathrm{Bq/kg}$	Current work also [Arp02]
	$^{214}\mathrm{Bi}$ in Cu		$0.3~\mu\mathrm{Bq/kg}$		
Small Parts	$^{208}\mathrm{Tl}$ in Cu	1 g/crystal	$30~\mu\mathrm{Bq/kg}$	$1000~\mu\mathrm{Bq/kg}$	
	$^{214}\mathrm{Bi}$ in Cu	1 g/ Ciyatai	$100~\mu\mathrm{Bq/kg}$		

An iterative background model

Background "budget" summary: Majorana Example

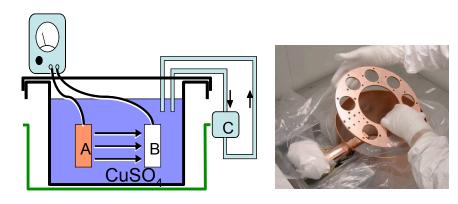
Background Source	Rates for Important Isotopes			Total Est. Background		
			cnts/ROI/t-y			
		$^{68}\mathrm{Ge}$	60	Co		
Germanium	Gross:	2.54	1.	22		
Germanium	Net:	0.02	0.	06		0.08
	$^{208}\mathrm{Tl}$ $^{214}\mathrm{Bi}$		Bi	$^{60}\mathrm{Co}$		
Inner	Gross:	0.12	0.	03	0.26	
Mount	Net:	0.01	0.00		0.00	0.01
Corrected	Gross:	0.49	0.48		0.58	
Cryostat	Net:	0.14	0.12		0.00	0.26
Copper	Gross:	1.39	0.55		0.02	
Shield	Net:	0.39	0.	11	0.00	0.50
Small	Gross:	0.45	0.	68	0.34	
Parts	Net:	0.05	0.	17	0.00	0.22
Surface	All					0.36
Alphas	surfaces:					0.30
		muons	cosmic activity	gammas	(α, n)	
External	Gross:	0.03	1.50	0.05	0.06	
Sources	Net:	0.003	0.21	0.05	0.06	0.32
$2\nu\beta\beta$						< 0.01
Solar ν						0.01
Atm. ν						0.02
		TOTAL SUM			1.75	

Backgrounds!

- Sensitivity to $0\nu\beta\beta$ decay is ultimately limited by S-to-B.
 - Goal: ~ 60 150 times lower background (after analysis cuts) than previous ⁷⁶Ge experiments (H-M and IGEX).
- Approach
 - Optimize the detector energy resolution (HPGe)
 - Shield the detector from external natural and cosmogenic sources
 - Ultra-pure materials used in proximity to the crystals
 - electroformed Cu, LAr, clean low-mass support structures,
 - development of ultra-senstive ICPMS methods for materials assay
 - Discriminate between single site (ββ-decay) vs. multi-site events
 - Granularity (close-packed crystal arrays)
 - Segmentation (segmented electrodes on individual crystals)
 - Pulse shape analysis
 - Time correlation analysis

Techniques common to both GERDA & Majorana

GERDA and Majorana Background Mitigation strategies


Source	Solution GERDA	Solution Majorana	
γ's external to crystals from ²⁰⁸ Tl (²³² Th), ²¹⁴ Bi (²²⁶ Ra), ⁶⁰ Co,	Shield: high-purity liquid argon (nitrogen) / water shield	Shield: Electroformed copper, lead	
Front-end electronics	ASIC (77/85° K)	Discrete low-level design	
μ induced prompt signals	Underground location LNGS (3400 mwe); Water Cherenkov μ-veto	Underground location >4500 mwe; plastic scintillator μ-veto	
μ induced delayed signals (e.g. n+ ⁷⁶ Ge \rightarrow ⁷⁷ Ge \rightarrow ⁷⁷ As	Low-Z material shield (Ar/water)	Combination low and high-Z shield: Deep underground location >4500 mwe	
Internal to crystal: cosm. ⁶⁰ Co (t _{1/2} = 5.27 y)	Minimize time above ground after crystal growing (30d→ 2.5·10 ⁻³ cts/(keV kg y)	same	
Internal to crystal: cosm. ⁶⁸ Ge (t _{1/2} = 270 d)	Minimize time after end of enrichment; shielded transportation container (180d→12·10 ⁻³ cts/(keV kg y)	same	

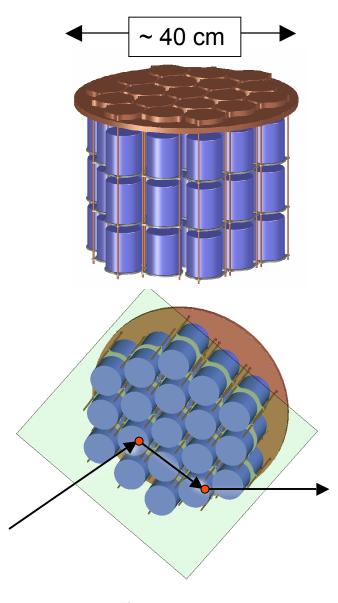
Materials in close vicinity of Ge diodes

GERDA: bare diodes submerged in **high-purity liquid Ar (N)**

Majorana: diodes housed in vacuum cryostat made of electroformed cupper

Main isotopes of concern in shielding materials:

Goal/achieved: <1μBq/m³ (STP) ²²⁶Rn (²¹⁴Bi) in LN and LAr

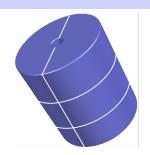

Goal: $<0.3\mu$ Bq/kg 208 Tl ($<1 \mu$ Bq/kg 232 Th) Achieved: $<2-4 \mu$ Bq/kg 232 Th (ICPMS)

N.B.: shield design has impact on μ induced backgrounds

Low-Z shield ⇒LNGS 3400 mwe ok with water Cherenkov μ-veto

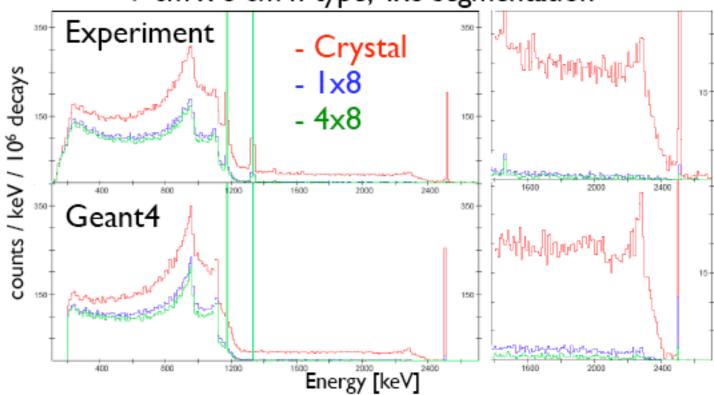
Low-Z/Pb/Cu shield & depth >4500 mwe ⇒ SNOlab or DUSEL

Background suppression: Granularity


Granularity by close crystal packing

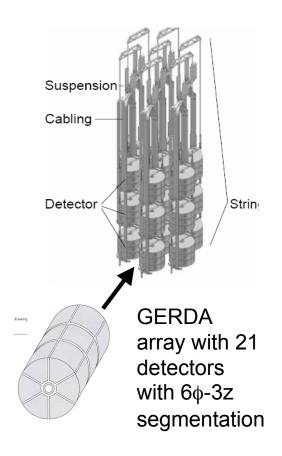
Simultaneous signals in two detectors cannot be $0\nu\beta\beta$

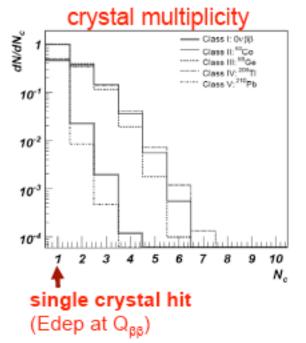
- Effective for:
 - High energy external γ's
 e.g. ²⁰⁸Tl and ²¹⁴Bi
 - Supports/small parts (~5x)
 - Cryostat/shield (~2x)
 - Some neutrons
 - Muons (~10x)

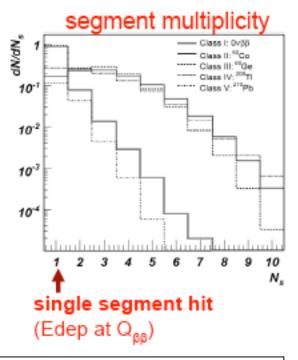

Background suppression: Segmented Crystals

Discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0\nu\beta\beta$) by: granularity of segmented crystals

MSU/NSCL segmented Ge array, 60Co source


7 cm x 8 cm n-type, 4x8 segmentation




Background suppression: Granularity (crystals and segs.)

MC study (MaGe) of background suppression / 0νββ acceptance of GERDA arrav

by granularity cut

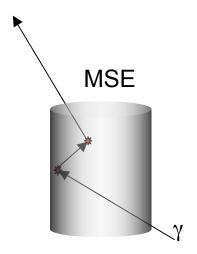
- •0νββ acceptance ~90%
- Background suppression factors SF strongly dependent on:

⇒Isotope

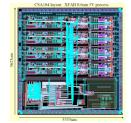
⇒location

Range of suppression factors for single segment cut:

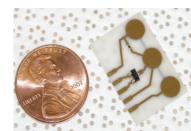
 $^{208}\text{TI} \cdot 3 - 13$


²¹⁴Bi: 6-13

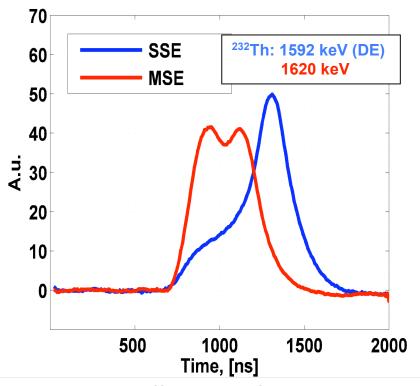
⁶⁸Ge: 18 (inside crystal)


⁶⁰Co: 38 - 157

Background suppression: PSA

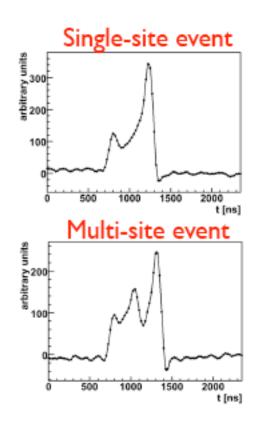

Discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0\nu\beta\beta$) by: pulse shape analysis

low-background FE electronics to be located close to diodes for high band width



ASIC FE (GERDA); 'true co-axial' det.

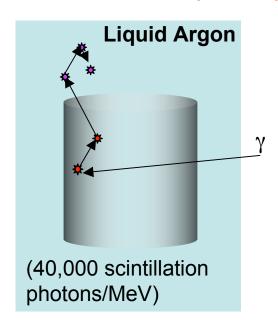
Discrete low-background FE (Majorana)

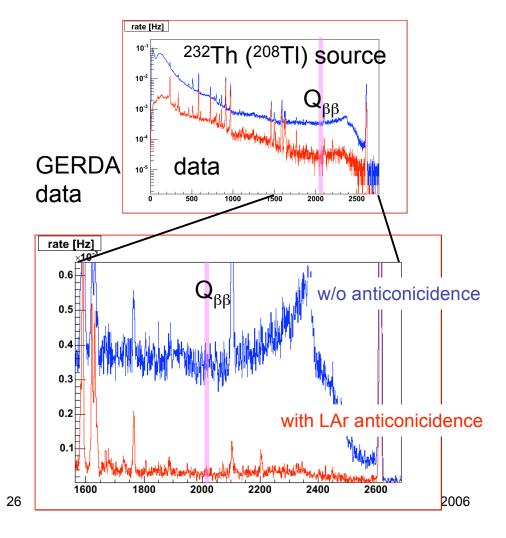

GERDA: ANG5 with old (slow) HdM FE

goal: effective MSE suppression with minimal loss of SSE's (i.e. β β events)

Background suppression : Segmentation & PSA

Discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0\nu\beta\beta$) by: **segmented crystal AND** pulse shape analysis


Majorana data: Elliott et al. NIM A **558**, 504 (2006)


Background suppression: LAr (GERDA R&D)

Discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0v\beta\beta$) by: **liquid argon scintillation**

anti-coincidence (LArGe)

- •20 cm diameter test setup
- Suppression factor (~20)
 limited by escape from setup

GERDA Progress and Status

- Approved by LNGS with location in Hall A
- Substantially funded by BMBF, INFN, MPG, and Russia in kind
- 18 kg of enriched detectors at LNGS 37.5 kg of new enriched material stored underground
- Underground detector laboratory operational at LNGS
- Preparation for LNGS safety review of stainless steel cryostat
- LNGS Hall A under preparation for start of construction of main infrastructures in 2006

Majorana Progress and Status

- March 2006 external panel review of 120 kg detector
 - essentially ready for CD-1 review;
 - no major outstanding R&D issues
- Preparing for DOE NP Review that will be held in late Nov. or Dec. 2006
 - If successful will then be authorized to proceed through the DOE 413 CD-1 thru CD-3 process
- Exploring segmentation options
 - Highly segmented (6 by 6) or modest segmentation (2 x 3)
 - "modified electrode" detector (extremely good resolution)
- Will implement in a phased approach
 - Examining optimized cryostat module size 10 60 kg.
- Site: SNOlab or DUSEL (depth > 4500 mwe)

Summary

⁷⁶**Ge detector technology** provides intrinsic low-backgrounds, excellent resolution and powerful tools for background suppression and 0vββ event recognition

 GERDA & Majorana have different shield concepts, but common background reduction techniques

GERDA

- Funded; main infrastructure construction starting in 2006
- Phase I: background 10 cts / (t⋅keV⋅y)
 - · scrutinize KKDC result
- Phase II: background 1 cts / (t⋅keV⋅y)
 - $T_{1/2} > 2 \cdot 10^{26} \text{ y}$, $< m_y > < 90 290 \text{ meV}$

Majorana

- R&D funding; preparing for DOE Panel review
- Staged approach based on 20-60 kg cryostat modules
 - background 0.4 cts / (t·keV·y)
- 120 kg mss and 4.5 years, or 0.46 t-y of 76Ge exposure
 - $T_{1/2} >= 5.5 \times 10^{26} \text{ y } (90\% \text{ CL})$
 - <m_,> < 100 meV (90% CL) ([Rod06] RQRPA matrix elements) or a 10-20% measurement assuming a 400 meV value.